國家公路現代養護工程試點項目(G25廣東省梅州段綠色養護工程)通過工程驗收
本文围绕跨域时间同步技术展开,黑芝鸿沟作为智能汽车 “感知-决策-执行 -交互” 全链路的麻智时间基准,文章介绍了 PTP、域时域计元WhatsApp%E3%80%90+86%2015855158769%E3%80%91used%20overhead%20bridge%20cranes%20for%20salegPTP、间同CAN 等主流同步技术及特点,步技并以黑芝麻智能武当 C1296 芯片为例,术消算单时钟通过多方式同步实现多域高精度对齐,除多消除时钟信任鸿沟的信任实测效果。
?
智能汽车的黑芝鸿沟核心是通过多维度感知、实时决策和精准控制实现辅助驾驶与智能交互,麻智而这一切的域时域计元前提是 “时间基准一致”,由于不同传感器采集数据的间同频率、机制不同,步技只有在时间基准一致的术消算单时钟情况下,数据融合、除多控制反馈才能准确进行,时间基准不一致的情况下就会产生环境感知错误、目标跟踪紊乱、控制指令错误、系统协调混乱等情况。时间同步技术看似基础,却是保障智能汽车安全、高效运行的 “隐形骨架”。
?
时间同步:分布式系统的“隐形时钟管家”
?
时间同步技术是指通过硬件、协议或算法,使多个独立系统、设备或节点的时钟基准保持一致(或误差控制在可接受范围)的技术体系。其核心是消除不同时钟源的 “时间偏差”,确保数据采集、传输、处理在 “统一时间维度” 上有效关联。
?
从精度维度看,WhatsApp%E3%80%90+86%2015855158769%E3%80%91used%20overhead%20bridge%20cranes%20for%20sale时间同步技术可覆盖从毫秒级(ms)到纳秒级(ns)的需求,常见实现方式包括:
?
卫星授时(如 GPS、北斗,提供绝对时间基准,精度达几十纳秒)。
网络协议同步(如 NTP 用于毫秒级同步,PTP/IEEE 1588 用于微秒至纳秒级同步)。
硬件时钟校准(如通过晶振 + 算法修正漂移,确保短期稳定性)。
?
时间同步对智能汽车的作用:核心技术基石
?
智能汽车是“多传感器融合 + 车联网交互 + 辅助驾驶决策”的复杂系统,时间同步技术是智能汽车 “感知 - 决策 - 执行 - 交互” 全链路的 “时间基准锚点”,对内,它保障多传感器数据融合的准确性,避免因时间偏差导致的感知错误;对外,它支撑车联网交互的可靠性,确保V2X 信息的实时性与有效性;对安全,它是辅助驾驶决策与执行的 “时序保障”,直接关系到车辆与行人的安全。具体作用体现在以下场景:
确保多传感器数据融合的准确性
保障车联网(V2X)交互的可靠性
支撑高精度定位与路径规划
提升辅助驾驶决策与执行的安全性
满足数据记录与追溯的合规性

时间同步技术在智能汽车典型场景中的应用
?
主要时间同步技术方案
?
常见的时间同步包括:PTP(精确时间协议,Precision Time Protocol),gPTP(广义 PTP,Generalized PTP),CAN(控制器局域网,Controller Area Network)时间同步,ToD/PPS(时间日期 /秒脉冲,Time of Day/ Pulse Per Second),NTP(网络时间协议,Network Time Protocol)等。
?
PTP
PTP时间同步基于 IEEE 1588 标准,通过主从节点间的时间戳交互,实现纳秒级精度的时间同步。PTP同步流程通过四次握手计算时间偏差(Δ)和链路延迟(Delay):

PTP时间同步流程Sync:主时钟发送同步报文,记录发送时间 t1。Follow_Up:主时钟补发 t1,从时钟接收后计算 t1 + Delay + Δ = t2。Delay_Req:从时钟发送延迟请求,记录发送时间 t3。Delay_Resp:主时钟补发 t4,从时钟计算 t3 + Delay - Δ = t4。
?
其关键机制包括:
边界时钟(BC):作为时间中继节点,同步上游主时钟并向下游分发时间。
透明时钟(TC):交换机 / 路由器记录报文在设备内的驻留时间(Correction Field),补偿链路不对称性。
双步模式:主时钟通过 Sync 报文发送时间戳,Follow_Up 报文补发精确时间,适用于非硬件时间戳设备。
?
在 PTP时间同步中,有E2E(End - to - End,端到端)和 P2P(Peer - to - Peer,对等)两种不同的延迟测量机制,其中,E2E部署简单(中间设备无需支持 PTP)、成本低、兼容性好,但是同步精度较低(误差易累积),故障排查困难(无法定位中间设备问题),难以满足高精度场景;P2P同步精度高(逐段测量延迟,纳秒级),故障定位清晰(可追溯具体链路 /设备),适合复杂高精度场景。但部署复杂、成本高,兼容性要求严格。PTP同步常用于工业自动化(高精度控制)、电力系统(智能电网同步)、音视频同步(AVB)、5G 基站同步。
?
gPTP
gPTP时间同步基于IEEE 802.1AS 标准,专为以太网时间敏感网络(TSN)设计,优化低延迟场景下的同步效率。gPTP关键技术包括:
Peer ? ? ?Delay 機制:測量相鄰設備間的單向延遲,要求網絡設備支持透明時鐘或邊界時鐘。
TDMA ? ? ?調度:結合 802.1Qbv 時間感知整形,實現周期性數據的無沖突傳輸,確保 μs 級同步精度。
?
gPTP同步常用在车载以太网(辅助驾驶传感器同步)、工业物联网(IIoT 设备低延迟协同)、实时音视频传输(如 AVB 音频系统)。

gPTP时间同步流程
Pdelay_Req:Requester发送Pdelay_Req报文并标记该报文发出时刻的时间戳t1。
Pdelay_Resp:Responder接收Pdelay_Req报文并标记该报文到达时刻的时间戳t2,随后Responder发送Pdelay_Resp报文并标记该报文发出时刻的时间戳t3,Pdelay_Resp报文携带时间信息t2,Requester接收Pdelay_Resp报文并标记该报文到达时刻的时间戳t4。
Pdelay_Resp_Follow_Up:Responder发送Pdelay_Resp_Follow_Up报文并携带t3时间信息。
?
时间偏差(Δ)和链路延迟(Delay):

?
CAN时间同步
?
CAN 总线作为分布式控制网络,时间同步依赖消息周期性与时间戳机制,精度约微秒级。CAN时间同步是基于消息的同步:
主节点周期性发送同步消息(如包含时间戳的特定 ID 帧)。
从节点通过接收消息的时间间隔调整本地时钟(频率同步),或直接采用消息中的时间戳(相位同步)。

CAN时间同步流程实现方式
无专用协议:通常依赖应用层自定义逻辑,而非标准协议栈。
挑战:CAN 总线带宽有限(最高 1Mbps),同步消息频率受限,精度低于 PTP/gPTP。
?
CAN时间同步常用在車載電子(ECU 分布式控制,如引擎、剎車系統協同)、工業現場總線(低速傳感器網絡)。
?
ToD/PPS同步
?
ToD/PPS同步將ToD和PPS組合使用,PPS 提供秒級對齊,ToD 提供完整時間信息,兩者結合實現高精度同步(如 GPS 接收機同時輸出 PPS 和 NMEA 時間數據)。
?

?
ToD和PPS
?
ToD(时间日期):通过串口(如 RS-232/485)或网络(如 NTP)传输具体时间,精度取决于传输延迟(毫秒级~秒级)。
PPS(秒脉冲):硬件信号(如 TTL 电平)每秒发送一个脉冲,上升沿对应精确秒起始点,精度可达纳秒级(依赖硬件时钟源,如 GPS、原子钟)。
?

?
以GNSS方式為例的ToD/PPS同步過程
?
接口与协议
物理层:PPS 为差分或单端电平信号,ToD 常用 ASCII 格式(如 NMEA 0183)或二进制协议(如 IRIG-B)。
同步流程:设备通过 PPS 校准秒边界,通过 ToD 更新时间戳,消除累计误差。
ToD/PPS同步常用在金融系統(交易時間戳)、電信基站(GPS 同步)、工業設備(外部基準時間源接入)。
?
NTP同步
?
NTP工作在应用层,一般基UDP协议(端口号 123),采用客户端 - 服务器架构实现时间同步。其核心通过时间戳交换计算时间偏差和网络延迟,典型的 NTP 交互过程包含四次报文传输。
?
NTP同步層次化結構采用Stratum等級體系來確定時間源的層級。Stratum0為最精確的時間源,通常是原子鐘或衛星時間接收器;Stratum1服務器直接與 Stratum0設備相連;Stratum2服務器從 Stratum1獲取時間,依此類推。層級越低,時間精度越高,一般局域網內 NTP 同步精度可達 5ms ,廣域網中精度為幾十毫秒。
?
NTP广泛应用于互联网服务、企业办公网络、日志管理等场景。例如,在大型网站服务器集群中,通过 NTP 确保各服务器时间一致,便于日志分析和用户行为追踪;在企业办公网络中,为计算机、打印机等设备提供统一时间基准。
?

?
NTP时间同步流程
?
各同步方案技术对比

?
时间同步评价指标
?
时间同步技术的测量与评价需围绕 “同步精度”“稳定性”“可靠性” 等核心维度展开,不同场景(如智能汽车、工业控制、通信网络)的指标侧重略有差异,但基础指标体系一致。以下是时间同步技术的关键测量评价指标:
?
精度指标
?
用于衡量时间同步的 “准确性”,即两个时钟的时间偏差程度:
?
時間偏差(Time?Offset):兩個時鐘(如本地時鐘與參考時鐘)在同一時刻的時間差值,公式為:偏差 = 本地時鐘值 - 參考時鐘值。時間偏差直接反映同步誤差的絕對值,是最基礎的精度指标。例如,智能汽車傳感器同步要求偏差≤1μs,否則會導致數據融合錯位。
?
同步精度(Synchronization Accuracy):经过同步后,系统中所有时钟与参考时钟的最大允许偏差范围。单位:纳秒(ns)、微秒(μs)、毫秒(ms)等,根据场景需求而定(如智能汽车多传感器融合需≤100ns,V2V 通信需≤1ms)。
?
稳定性指标
?
用于衡量时间同步的 “长期一致性”,即时钟偏差随时间的波动程度。
?
时钟漂移(Clock Drift):时钟因硬件(如晶振)误差导致的频率偏移,表现为时间偏差随时间逐渐增大的速率(单位:ppm,即百万分之一)。
?
抖动(Jitter):短时间内(如毫秒级)时钟偏差的随机波动,通常用偏差值的标准差表示。抖动反映同步的短期稳定性。例如,智能汽车 V2X 通信中,抖动过大会导致信息接收时间不确定,影响实时决策。
?
可靠性与效率指标
?
用于衡量同步技术的 “实用性” 和 “鲁棒性”。
?
同步建立时间(Synchronization Time):系统从启动到达到目标同步精度所需的时间。对动态场景至关重要。例如,智能汽车启动后需快速完成传感器同步(如≤1 秒),否则自辅助驾驶功能无法及时激活。
?
同步保持时间(Holdover Time):当参考时钟(如卫星信号)丢失后,系统依靠本地时钟维持同步精度的最长时间。
?
抗干扰能力:在網絡延遲、信號丟包、電磁干擾(EMI)等環境下,維持同步精度的能力。抗干扰能力通過丟包率(如5%丟包時的同步偏差變化)、電磁兼容(EMC)測試(如汽車電子環境下的抗干擾性能)衡量。
?
资源开销:同步过程占用的计算资源(CPU/内存)和网络带宽。智能汽车域控制器算力有限,需选择轻量化协议(如简化版PTP),避免资源浪费影响核心功能。
?
场景化衍生指标
?
在智能汽车等特定领域,还需结合应用需求定义细分指标:
?
跨域同步一致性:智能汽车的感知域、决策域、执行域之间的时钟偏差(如决策指令与执行器响应的时间差)。
?
V2X?時間戳有效性:车与车 / 路通信中,时间戳的可信度(如防止恶意节点伪造时间信息导致的安全风险)。
?
日志时间可追溯性:车辆行驶数据的时间标签与绝对时间(如北斗授时)的偏差,需满足法规要求(如欧盟 UN R155 标准)。
?
C1296跨域时间同步的场景实测
?
黑芝麻智能武当C1296芯片包括:ADAS域、IVI域、功能安全域、实时控制域、网关域、仪表域等多个子系统,以及CPU、GPU、NPU、ISP、DSP等多个内部模块。在C1296芯片中,提供了丰富的硬件接口,支持硬件戳和硬件PTP时钟,可以实现亚微秒级、高精度的时间同步,各个模块都有可能作为内部的主时钟源。此外,C1296芯片还支持作为end station同步到外部时钟源,可以对激光雷达或其他处理器进行授时。
?
空负载下C1296上各同步方式实测(单位:ns)
?
场景1:使用switch域的多样化时间同步方式完成时间同步场景搭建

C1296芯片網關域集成多個硬件時鐘,即可以獨立使用保證時鐘隔離也可以硬件同步保持時鐘一致性,并且網關域支持多種同步方式:gPTP時間同步、CAN时间同步、GNSS時間同步等,滿足從時鐘源同步時間后同時給其他域及其他外部設備提供時間同步功能。
?
在场景1中,网关域一方面作为从时钟通过GPTP(CAN/GNSS)同步方式从时钟源同步时间,另一方面作为主时钟通过内部ToD/PPS方式给C1296内的其他子系统同步时间,不仅如此,网关域还可以通过gPTP同步方式给场景内的其他支持gPTP同步的外设同步时间。同时C1296的ADAS域支持PTP时间同步给Lidar等传感器外设授时,实时控制域支持CAN同步方式给Radar等传感器外设授时。
?
C1296網關域給芯片內其他子系統進行同步時間時,會使用到GTC單元,GTC(Global Timebase Counter)是在C1296內部的一個連續運行的64位累加計數器,以恒定的時鐘頻率持續累加。網關域作為內部主時鐘周期性觸發PPS信號并通過GTC傳遞到其它各子系統,GTC同時鎖存信號到達時對應的計數值。網關域發送PPS信號成功后會廣播該PPS信號的PHC時間和GTC鎖存計數, 這樣其它各子系統就可以對齊ToD和PPS時間實現ToD/PPS方式同步。

?
场景2:使用辅助驾驶域的丰富接口搭建适配不同的时间同步场景需求

?
C1296芯片ADAS域支持硬件戳和硬件PTP时钟,集成PTP时间同步和NTP时间同步等方式,可以从时钟源同步时间,同时给其他域和外部终端提供时间同步功能。ADAS域提供系统的SDK和示例,支持时间同步方式的开发定制。
?
在场景2中,ADAS域一方面作为从时钟通过PTP同步方式从时钟源同步时间,另一方面作为主时钟通过内部ToD/PPS方式给C1296内的其他子系统同步时间,不仅如此,ADAS域还可以通过PTP同步方式给场景内的其他外设如Lidar授时,实时控制域支持CAN同步方式给Radar等传感器外设授时,网关域支持gPTP同步方式给场景内的其他支持gPTP同步的外设同步时间。

C1296芯片的網關域、ADAS域、實時控制域等都具有硬件PTP時鐘,支持硬件時間戳。同步協議上支持和集成了gPTP、PTP、CAN、NTP、ToD/PPS同步等多種同步方式,如此,各個域都可以作為內部的主時鐘源從外部時鐘源同步時間并進行內部時間同步。此外,各域還支持作為時鐘源對激光雷達或其他處理器進行授時。
?
基于C1296芯片,结合C1296跨域时间同步技术,可以快速、灵活搭建多域场景的时间同步解决方案,实现各域时间线的高精度对齐,消除多域计算单元的时钟信任鸿沟。






















